P P SAVANI UNIVERSITY

First Semester of Diploma Examination November 2022

IDSH1010 Fundamental of Mathematics

	22, Friday Time: 01:00 p.m. To 03:30 p.m.	Maximum Mar	rks: 6
 Section Make 	uestion paper comprises of two sections. on I and II must be attempted in separate answer sheets. suitable assumptions and draw neat figures wherever required. f scientific calculator is allowed.	the concentration of the conce	
Q-1	Choose the correct answer:	[10] CO	BTI
(i)	$\log_2 8 = \underline{\hspace{1cm}}$	[10] CO	5
(ii)	a) 3 b) 2 c) 1 d) 4 If $\log x + \log 2x = \log 18$, then what is the value of x?	1	5
	a) 2 b) 6 c) 1 d) 3	The same of the same of	5
(iii)	If $A = \begin{pmatrix} 6 & 2 \\ 4 & 5 \end{pmatrix}$, then $ A = $	2	5
	a) 30 b) 2 c) 1 d) 4		
(iv)	If determinant of A is zero then matrix is called	• 2	2
	a) Non-Singular Matrix b) Singular Matrix		
(v)	c) Scalar Matrix d) Unit Matrix		
(*)	$A = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ is called	2	1
	a) Null Matrix b) Void Matrix		
(vi)	c) Identity Matrix d) Both (a) & (b)		
(41)	For two invertible matrices A and B of suitable orders, the value of $(AB)^{-1}$ is	2	2
	2 (20-1)-1	
(vii)	a) $(BA)^{-1}$ b) $B^{-1}A^{-1}$ c) $A^{-1}B^{-1}$ d) $(AB)^{-1}B^{-1}$ if $\sin x = \frac{3}{4}$, then $\cos x = \frac{1}{4}$.	3/4	3/
	a) $\frac{2}{3}$ b) $\frac{\sqrt{3}}{2}$ c) $\frac{\sqrt{7}}{2}$ d) $\frac{1}{2}$		
(viii)	2 2		
(viii)	$\sin\left(x-\frac{\pi}{2}\right) = \underline{\qquad}.$	3/4	2
	a) $\sin x$ b) $-\sin x$ c) $\cos x$ d) $-\cos x$	os x	
(ix)	$\cos^2 x = \underline{\hspace{1cm}}$	3/4	2
	a) $1 + \sin^2 x$ b) $1 - \sin^2 x$ c) $1 - \sin x$ d) None of these		
(x)	c) $1 - \sin x$ d) None of these $\sec^2 x - \tan^2 x = $	2/4	
	a) -1 b) 1 c) 0 d) sec	3/4 x	1
Q-2	Anguard C. II		
(i)	Answer the following question: (Any four) Solve $log_2(x + 5) + log_2(x - 2) = 3$.	[20]	
(ii)	Solve $\log_2(x + 5) + \log_2(x - 2) = 5$.	1	3/5
(iii)	If $A = \begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix}$ and $B = \begin{bmatrix} -2 & 3 \\ 1 & 1 \end{bmatrix}$, then prove that $A^T B^T = (BA)^T$.	1 2	3/5
(iv)		allows (1, 1-7)	
(v)	If $A = \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}$, then show that $A^2 - 5A + 7I = 0$.		5
	$A = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 2 \\ 3 & 2 \end{bmatrix}$, then find AB and BA . Is $AB = BA$?	2	5
(vi)	Prove that $\tan \theta (1 - \cot^2 \theta) + \cot \theta (1 - \tan^2 \theta) = 0$	3/4	2/5

3/4 2/5 Page 1 of 3

	(vii)	Prove that $(\csc \theta - \sin \theta)(\sec \theta - \cos \theta)(\cot \theta + \tan \theta) = 1$	3/4	2/5
	(viii)	If $\sin \theta = \frac{4}{5}$ then find $\tan \theta$, $\cos \theta$, $\cot \theta$, $\sec \theta$, & $\csc \theta$.	3/4	2/5
		and games (acaims between school		
	Q-3	Choose the correct answer:	.0]	
	(i)	Find the distance between points $A(1, 2, 4)$ and $B(5, 1, 4)$?	3/4	3
		a) $\sqrt{17}$ b) $\sqrt{20}$ c) $\sqrt{15}$ d) $\sqrt{23}$		
	(ii)	If the distance between the points $(a, 2)$ and $(3,4)$ be 8, then $a = $	3/4	2/5
		a) $2 + 3\sqrt{15}$ b) $2 - 3\sqrt{15}$		
		c) $2 \pm 3\sqrt{15}$ d) None of these		
	(iii)	If $\vec{a} = -2i + j \& \vec{b} = i + j$ then $ \vec{a} + \vec{b} = \sqrt{5} + \sqrt{2}$	3/4	2/5
		a) True b) False		
	(iv)	If $\vec{a} = 3i + 3j$ then $ \vec{a} = \underline{}$.	3/4	6
		a) $3\sqrt{2}$ b) $\sqrt{18}$ c) 0 d) None of these		
	(v)	If $\vec{a} = 2i + 3j$, $\vec{b} = 3i - j - 2k$ then find $\vec{a} + \vec{b}$.	3/4	5
		a) $-i + 4j + 2k$ b) $5i + 2j - 2k$		
		c) $-i - 4j + 2k$ d) $5i - 2j - 2k$		
	(vi)	Volume of cube is a^3 .	3/4	1
		a) True b) False		
	(vii)	Area of rectangle is $A = l \times b$.	3/4	1
		a) True b) False		
	(viii)	If triangle ABC is an equilateral triangle and side $BC = 6 c.m.$ then find the area	3/4	5
		of ABC.		
		a) $9\sqrt{3} c.m^2$. b) $\sqrt{3} c.m^2$. c) $9 c.m^2$. d) None of these		
	(ix)	Volume of cylinder is $\pi r^2 h$.	3/4	1
	(-)	a) True b) False		(Ight)
	(x)	If $r = 20 c.m$, the $d =$.	3/4	5
		a) 2 c.m. b) 10 c.m. c) 40 c.m. d) None of these		
	Q-4	Answer the following question: (Any four)	20]	
	(i)	If $\overline{a} = 2i + j - 3k$, $\overline{b} = 4i + 5j + 4k$ and $\overline{c} = 3i - 2j + k$ the find $3\overline{a} + 2\overline{b} - 3\overline{c}$.	3/4	3
	(ii)	For $\bar{x} = (-4, 9, 6), \bar{y} = (0, 7, 10)$ and $\bar{z} = (-1, 6, 6)$ show that	3/4	3
		$(\bar{x} - \bar{z})(\bar{y} - \bar{z}) = 0$	The second	
	(iii)	If $\vec{x} = (1, 3, 2)$ and $\vec{y} = (4, -2, 1)$ then find,	3/4	3
		a) $\vec{x} \cdot \vec{y}$		
		b) $ \vec{x}.\vec{y} $		
		c) $\vec{x} + \vec{y}$		
		d) $\vec{x} - \vec{y}$		
	(iv)	Prove that the lines $7x + y - 1 = 0$ and $3x - 21y + 2 = 0$ are perpendicular to	3/4	2/5
		each other.		
0	(v)	Find the equation of lines passing through the following point:	3/4	2/5
		a) (1,3),(0,7)		
	(vd)	b) (1,6), (-2,5)	Herelo?	
	(vi)	What will be the value of k such that the points $(k^2, 2k), (-5, -1)$ and	3/4	2/5
	(vii)	(-1,1) are collinear? The radius of the base of cylinder is 10 cm, and their beights are 14 cm, then	04	_
	(vii)	The radius of the base of cylinder is 10 c.m. and their heights are 14 c.m. then find area of its curved surface.	3/4	5
		mia ai ca oi no cai vea sai lace.		

(viii) Find area of isosceles triangle whose same slides are of length 13 c.m. and base is of length of 24 c.m.

3/4

CO : Course Outcome Number

BTL : Blooms Taxonomy Level

Level of Bloom's Revised Taxonomy in Assessment

1: Remember	2: Understand	3: Apply	
4: Analyze	5: Evaluate	6: Create	